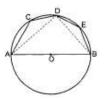


Class IX Session 2024-25 Subject - Mathematics Sample Question Paper - 3

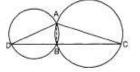
Time Allowed: 3 hours

General Instructions:

Maximum Marks: 80

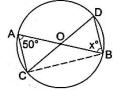

- 1. This Question Paper has 5 Sections A-E.
- 2. Section A has 20 MCQs carrying 1 mark each.
- 3. Section B has 5 questions carrying 02 marks each.
- 4. Section C has 6 questions carrying 03 marks each.
- 5. Section D has 4 questions carrying 05 marks each.
- 6. Section E has 3 case based integrated units of assessment carrying 04 marks each.
- 7. All Questions are compulsory. However, an internal choice in 2 Qs of 5 marks, 2 Qs of 3 marks and 2 Questions of 2 marks has been provided. An internal choice has been provided in the 2 marks questions of Section E.
- 8. Draw neat figures wherever required. Take π =22/7 wherever required if not stated.

			Section A				
1.	π is	Vin					[1]
	a) a rational number		b) a	n integer			
	c) an irrational number		d) a	whole number			
2.	The linear equation $3x - 5y = 1$	5 has					[1]
	a) no solution b) infinitely many solutions						
	c) a unique solution		d) tv	wo solutions			
3.	Two points having same abscis	Two points having same abscissa but different ordinates lie on					[1]
	a) y-axis		b) x	-axis			
	c) a line parallel to y-axis		d) a	line parallel to	x-axis		
4.	To draw a histogram to represe	nt the follow	ing frequency d	istribution :			[1]
	Class interval	5-10	10-15	15-25	25-45	45-75	
	Frequency	6	12	10	8	15	
	The adjusted frequency for the class 25-45 is						
	a) 6		b) 5				
	c) 2		d) 3				
5.	The graph of the linear equation $2x + 3y = 6$ is a line which meets the x-axis at the point						[1]
	a) (0,3)		b) (3	3,0)			
			Page 1 of 18				
г об	LUCK 🖪 @vcgc.aligarh		aligarh 👩 (@VCGC Aliga	rh 🖪 VCGC (VCCC Online


	c) (2, 0)	d) (0 ,2)					
6.		les are equal to each other in the form of	[1]				
	a) A postulate	b) A proof					
	c) An axiom	d) A definition					
7.	In the figure AB & CD are two	o straight lines intersecting at O, OP is a ray. What is the measure of $ar{AOD}$.	[1]				
	F C 3x+7 P						
	$\overbrace{A O 40^{\circ} B}^{x+5}$						
	D						
	a) ₁₂₈ 0	b) ₄₀ 0					
	c) ₁₄₀ °	d) ₁₀₀ °					
8.	The diagonals AC and BD of a	a rectangle ABCD intersect each other at P. If $\angle ABD = 50^{\circ}$, then $\angle DPC =$	[1]				
	a) 70°	b) 80°					
	c) 90º	(d) 100° C					
9.	Zero of the zero polynomial is	$(a) 100^{\circ}$	[1]				
	a) every real number	b) 1 d) 0 equation $5x - 2y = 7$. b) $y = \frac{7-5x}{2}$ d) $y = \frac{5x+7}{2}$					
	c) not defined	d) 0					
10.	Express y in terms of x in the x	equation $5x - 2y = 7$.	[1]				
	a) $y = \frac{5x-7}{2}$	b) $y = \frac{7-5x}{2}$ d) $y = \frac{5x+7}{2}$					
11	c) $y = \frac{7x+5}{2}$		[4]				
11.		t $\angle ACB = 40^\circ$, then $\angle ADB$ is	[1]				
	a) 100° c) 60°	b) 40° d) 50°					
12.		BCD bisect each other. If $\angle A = 45^{\circ}$, then $\angle B =$	[1]				
12.	a) ₁₂₅ °	b) 115°					
	c) ₁₂₀ °	d) ₁₃₅ °					
13.		$^{o}, \angle ABD = 50^{o},$ then $\angle ACB$ is equal to :	[1]				
10.	$\frac{D}{C} = 00$		[*]				
	60° 50°						
	a) 80°	b) 60 °					
	c) 50°	d) 70°					
Page 2 of 18							
BEST O	BEST OF LUCK 👔 @vcgc.aligarh 🞯 @vcgc_aligarh 父 @VCGC Aligarh ⊵ VCGC Online Detter VCGC Online App						

14.	The simplest form of $0.5\overline{7}$ is		[1]			
	a) $\frac{26}{45}$	b) <u>57</u>				
	c) $\frac{57}{100}$	d) $\frac{57}{90}$				
15.	Which of the following point does not lie on the line $y = 2x + 3$?					
	a) (-5, -7)	b) (-1, 1)				
	c) (3, 9)	d) (3, 7)				
16.	The congruence rule, by which the two triangles in P	the given figure are congruent is	[1]			
	R CITCO CIN S					
	a) ASA	b) SAS				
	c) SSS	d) RHS G				
17.	In a histogram, which of the following is proportion	al to the frequency of the corresponding class?	[1]			
	a) Width of the rectangle	b) Length of the rectangle				
	c) Perimeter of the rectangle	d) Area of the rectangle				
18.	18. The curved surface area of a cylinder and a cone is equal. If their base radius is same, then the ratio of the slant [height of the cone to the height of the cylinder is					
	a) 1 : 1	b) 2 : 3				
	c) 1 : 2	d) 2 : 1				
19.	Assertion (A): The sides of a triangle are 3 cm, 4 cm Reason (R): If $2s = (a + b + c)$, where a, b, c are the	m and 5 cm. Its area is 6 cm ² . e sides of a triangle, then area = $\sqrt{(s-a)(s-b)(s-c)}$.	[1]			
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.				
	c) A is true but R is false.	d) A is false but R is true.				
20.	Assertion (A): The point (1, 1) is the solution of x -	+ y = 2.	[1]			
	Reason (R): Every point which satisfy the linear equation is a solution of the equation.					
	a) Both A and R are true and R is the correct explanation of A.	b) Both A and R are true but R is not the correct explanation of A.				
	c) A is true but R is false.	d) A is false but R is true.				
	S	ection B				
21.	The base of an isosceles triangle measures 24 cm ar	*	[2]			
22.	In given figure, AOB is a diameter of the circle and value of $\angle ACD + \angle BED$.	C, D, E are any three points on the semi-circle. Find the	[2]			
ECT OI	Page 3 of 18					

BEST OF LUCK 👔 @vcgc.aligarh 💿 @vcgc_aligarh 😏 @VCGC Aligarh 🗾 VCGC Online 🕨 📰 VCGC Online App



- 23. The outer diameter of a spherical shell is 10 cm and the inner diameter is 9 cm. Find the volume of the metal contained in the shell. [2]
- 24. In the given figure, two circles intersect at two points A and B. AD and AC are diameters to the two circles. [2]Prove that B lies on the line segment DC.

OR

If O is the centre of the circle, find the value of x in given figure:

25. Find whether the given equation have x = 2, y = 1 as a solution: x + y + 4 = 0.

OR

Find whether $(\sqrt{2}, 4\sqrt{2})$ is the solution of the equation x - 2y = 4 or not?

- 26. Give three rational numbers between $\frac{1}{3}$ and $\frac{1}{2}$.
- 27. Find the value of k, if x 1 is a factor of p(x) in case: $p(x) = 2x^2 + kx + \sqrt{2}$ [3]

Section C

28. From a point in the interior of an equilateral triangle, perpendiculars are drawn on the three sides. The lengths of [3] the perpendiculars are 14 cm, 10 cm and 6 cm. Find the area of the triangle.

OR

The triangular side walls of a flyover have been used for advertisements. The sides of the walls are 13 m, 14 m and 15 m. The advertisements yield an earning of Rs2000 per m² a year. A company hired one of its walls for 6 months. How much rent did it pay?

29. Find solutions of the form x = a, y = 0 and x = 0, y = b for the following pairs of equations. Do they have any common such solution? [3]

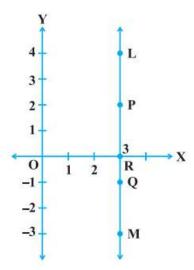
3x + 2y = 6 and 5x + 2y = 10

30. Show that the quadrilateral formed by joining the mid-points the sides of a rhombus, taken in order, form a rectangle. [3]

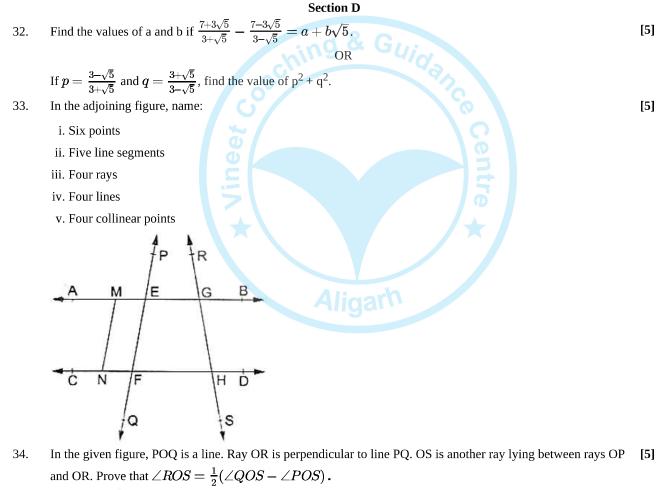
OR

In figure D is mid-points of AB. P is on AC such that PC = $\frac{1}{2}$ AP and DE || BP, then show that AE = $\frac{1}{3}$ AC.

31. In Figure, LM is a line parallel to the y-axis at a distance of 3 units.


[3]

[2]


[3]

Page 4 of 18

- i. What are the coordinates of the points P, R and Q?
- ii. What is the difference between the abscissa of the points L and M?

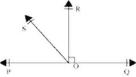
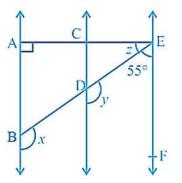
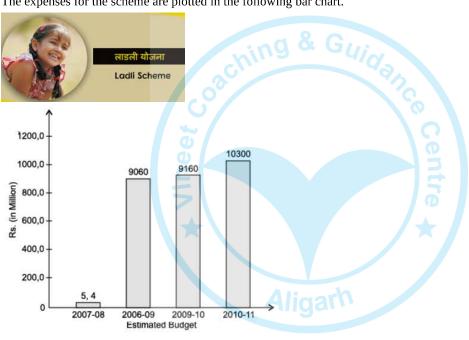



Fig., AB || CD and CD || EF. Also, EA \perp AB. If \angle BEF = 55°, find the values of x, y and z.

Page 5 of 18

BEST OF LUCK 👔 @vcgc.aligarh 💿 @vcgc_aligarh 🎔 @VCGC Aligarh 🔼 VCGC Online December 2015


35. Find the values of a and b so that the polynomial $(x^4 + ax^3 - 7x^2 - 8x + b)$ is exactly divisible by (x + 2) as well **[5]** as (x + 3).

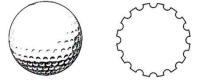
Section E

36. **Read the following text carefully and answer the questions that follow:**

[4]

Ladli Scheme was launched by the Delhi Government in the year 2008. This scheme helps to make women strong and will empower a girl child. This scheme was started in 2008. The expenses for the scheme are plotted in the following bar chart.

- i. What are the total expenses from 2009 to 2011? (1)
- ii. What is the percentage of no of expenses in 2009-10 over the expenses in 2010-11? (1)
- iii. What is the percentage of minimum expenses over the maximum expenses in the period 2007-2011? (2)


OR

What is the difference of expenses in 2010-11 and the expenses in 2006-09? (2)

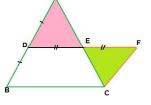
37. Read the following text carefully and answer the questions that follow:

[4]

A golf ball is spherical with about 300 - 500 dimples that help increase its velocity while in play. Golf balls are traditionally white but available in colours also. In the given figure, a golf ball has diameter 4.2 cm and the surface has 315 dimples (hemi-spherical) of radius 2 mm.

Page 6 of 18

- i. Find the surface area of one such dimple. (1)
- ii. Find the volume of the material dug out to make one dimple. (1)
- iii. Find the total surface area exposed to the surroundings. (2)


OR

Find the volume of the golf ball. (2)

38. Read the following text carefully and answer the questions that follow:

Haresh and Deep were trying to prove a theorem. For this they did the following

[4]

- i. Draw a triangle ABC
- ii. D and E are found as the mid points of AB and AC
- iii. DE was joined and DE was extended to F so DE = EF
- iv. FC was joined.

Questions:

- & Guidance Cent i. \triangle ADE and \triangle EFC are congruent by which criteria? (1)
- ii. Show that $CF \parallel AB$. (1)
- iii. Show that CF = BD. (2)

OR

Show that DF = BC and $DF \parallel BC$. (2)

Page 7 of 18

BEST OF LUCK 👔 @vcgc.aligarh 💿 @vcgc_aligarh 🎔 @VCGC Aligarh 🔼 VCGC Online 💽 🔤 VCGC Online App

Today is your OPPORTUNITY to build the TOMORROW you want.

ADMISSIONS OPEN

Session 2024-25

for AMUXI ENTRANCE

Science / Diploma / Commerce / Humanities

Batches Starting Soon

Vineet Coaching & Guidance Centre

VCGC Tower, Phase I, ADA Colony, Ramghat Road, Aligarh-202001 (UP) website : www.vcgc.in | E-Mail : vcgc.official@gmail.com

8923803150, 9997447700

🕧 @vcgc.aligarh 🎯 @vcgc_aligarh 🎯 @VCGC Aligarh 🖸 VCGC Online 🕨

XI AMU ENTRANCE RESULTS 2023-24

Abhishek Gaur

Aaliya Singh

Mugdha Singh

Tanmay Mudgal Aastha Sharma

Riddhima Tomar

Shaurya Gangal

Ayushi Gautam

Anubhav Gupta Akash Basu

Rashi Singh

Saloni Chaudhary Ayushi Dhanger

Sanchi Popli

Yashi Vashishtha

Harshit Raghav

Divya Singh

Srishty

Vanshika Garg

Sanyogita

Vivek Gautam

Aman Varshney Pranjal Tiwari Priyanshi Dhangar Purnank Nandan

8923803150, 9997447700

👔 @vcgc.aligarh 🌀 @vcgc_aligarh 👽 @VCGC Aligarh 🖸 VCGC Online 🕨

Khanak

Prachi Singh

Pakhi Garg

Prabhat Singh

Manav Kushwaha

Rudraksh Chaudhary

Ayush Senger

Aryan Tiwari

Afifa Malik

Solution

Section A

1.

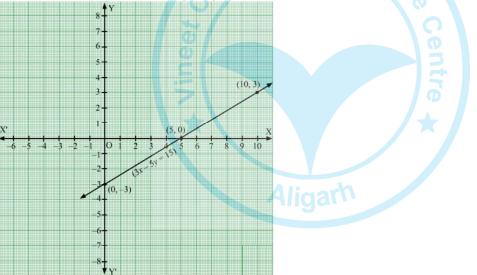
(c) an irrational number

Explanation: π = 3.14159265359...., which is non-terminating non-recurring. Hence, it is an irrational number.

2.

(b) infinitely many solutions

Explanation:


Given linear equation: 3x - 5y = 15 Or, $x = \frac{5y+15}{3}$ When y = 0, x = $\frac{15}{3}$ = 5 When y = 3, x = $\frac{30}{3}$ = 10 When y = -3, x = $\frac{0}{3}$ = 0

XX	5	10	0
уу	0	8 3G	-3

Plot the points A(5,0), B(10,3) and C(0,-3). Join the points and extend them in both the directions.

We get infinite points that satisfy the given equation.

Hence, the linear equation has infinitely many solutions.

3.

(c) a line parallel to y-axis

Explanation: Two points having same abscissa but different ordinate always make a line which is parallel to the y-axis as abscissa is fixed and the only ordinate keeps changing.

4.

(c) 2

Explanation: Adjusted frequency = $\left(\frac{\text{frequency of the class}}{\text{width of the class}}\right) \times 5$ Therefore, Adjusted frequency of 25 - 45 = $\frac{8}{20} \times 5 = 2$

5.

(b) (3,0)

Explanation: 2x + 3y = 6 meets the X-axis.

Page 8 of 18


```
Put y = 0,

2x + 3(0) = 6

x = 3

Therefore, graph of the given line meets X-axis at (3, 0).
```

6. (a) A postulate

Explanation: Eucid's fourth postulate states that all right angles are equal to one another.

7.

```
(c) 140°
```

Explanation: 140°

```
From the figure it follows that

(3x + 7) + (x + 5) + 40 = 180

\Rightarrow 4x + 52 = 180

\Rightarrow 4x = 180 - 52 = 128

\Rightarrow x = 32

Now,

\angle AOD = \angle COP + \angle POB

\Rightarrow \angle AOD = (3x + 7) + (x + 5)

\Rightarrow \angle AOD = 4x + 12

\Rightarrow \angle AOD = 4 \times 32 + 12

\Rightarrow \angle AOD = 128 + 12

\Rightarrow \angle AOD = 140
```

8.

```
(b) 80<sup>0</sup>
```

```
Explanation:
Given,
ABCD is a rectangle
```


Diagonals AC & BD intersect each other at P

 $\angle ABD = 50^{\circ}$

```
\because diagonals of rectangle bisect each other and are equal in length
```

- $\Rightarrow \angle ABD = \angle PDC$ [alternate angles]
- $\Rightarrow \angle PDC = \angle PCD = 50^{\circ}$

In $\triangle DPC$

```
\Rightarrow \angle DPC + \angle PCD + \angle PDC = 180^{\circ}
```

- $\Rightarrow \angle DPC + 50^{\circ} + 50^{\circ} = 180^{\circ}$
- $\Rightarrow \angle DPC = 180^{\circ} 100^{\circ} = 80^{\circ}$

9. (a) every real number

Explanation: Zero of the zero polynomial is any real number.

e.g., Let us consider zero polynomial be 0(x - k), where k is a real number.

For determining the zero, put x - k = 0 \Rightarrow x = k Hence, zero of the zero polynomial be any real number.

10. (a)
$$y = \frac{5x-7}{2}$$

Explanation: $5x - 2y = 7$
 $- 2y = 7 - 5x$

2y = 5x - 7 $y = \frac{5x - 7}{2}$

11.

(d) 50°

Page 9 of 18

Explanation: In Rhombus, digonals bisect each other right angle. By using angle sum property in any of the four triangles formed by intersection of diagonals, we get \angle CBD = 50 and \angle CBD = \angle ADC (alternate angles). So, $\angle ADC = 50$

12.

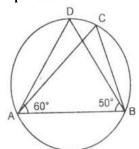
(d) 135° **Explanation:** Given,

ABCD is a quadrilateral

 $\angle A = 45^{\circ}$,

: diagonals of quadrilateral bisects each other hence ABCD is a parallelogram,

 $\Rightarrow \angle A + \angle B = 180^{\circ}$


 $\Rightarrow 45^{\circ} + \angle B = 180^{\circ}$

 $\Rightarrow \angle B = 180^{\circ} - 45^{\circ} = 135^{\circ}$

Explanation:

(d) 70°

In, △ABD

 $\angle D = 180^{\circ} - \angle A - \angle B$

 $=180^{\circ} - 110^{\circ} = 70^{\circ}$

Since angles made by same chord at any point of circumference are equal so, $\angle ACB = \angle ADB = 70^{\circ}$

14. **(a)**
$$\frac{26}{45}$$

Explanation: $0.5\overline{7} = \frac{57-5}{90}$ $=\frac{52}{90}=\frac{26}{45}$

15.

(d) (3, 7)

Explanation: Let us put x = 3 in the give equation, Then, y = 2(3) + 3y = 6 + 3 = 9So, the point will be (3, 9) For x = 3, y = 9. But in the given option, y = 7So, the given point (3, 7) will not lie on the line y = 2x + 3.

16.

(b) SAS **Explanation:** In \triangle PQR and \triangle PQS PR = PS = 8 cm $\angle RPQ = \angle SPQ$ (Given)

Page 10 of 18

BEST OF LUCK 👔 @vcgc.aligarh 💿 @vcgc_aligarh 🎔 @VCGC Aligarh 🔼 VCGC Online December 2015

PQ = PQ (Common)

 $\therefore \triangle PQR \cong \triangle PQS$ (By SAS congruency)

17.

```
(b) Length of the rectangle
```

Explanation: In, Histogram each rectangle is drawn, where width equivalent to class interval and height equivalent to the frequency of the class.

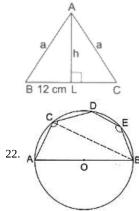
Section B

18.

(d) 2 : 1

Explanation: CSA of cone = CSA of cylinder π rl = 2 π rh l = 2h l:h=2:1

19.


(c) A is true but R is false. **Explanation:** $s = \frac{a+b+c}{2}$ $s = \frac{3+4+5}{2} = 6 \text{ cm}$ Area = $\sqrt{s(s-a)(s-b)(s-c)}$ $=\sqrt{(6)(6-3)(6-4)(6-5)}$ $=\sqrt{(6)(3)(2)(1)} = 6 \text{ cm}^2$

& Guidance 20. (a) Both A and R are true and R is the correct explanation of A **Explanation:** Putting (1, 1) in the given equation, we have L.H.S = 1 + 1 = 2 = R.H.SL.H.S = R.H.SHence (1, 1) satisfy the x + y = 2. So it is the solution of x + y = 2.

21. Let $\triangle ABC$ be an isosceles triangle and let AL \perp BC

 $\therefore \frac{1}{2} \times BC \times AL = 192 \text{cm}^2$ $\Rightarrow \frac{1}{2} \times 24$ cm $\times h = 192$ cm² \Rightarrow $\tilde{h} = \left(\frac{192}{12}\right)$ cm = 16 cm Now, $BL = \frac{1}{2}(BC) = (\frac{1}{2} \times 24)$ cm = 12 cm and AL = 16 cm. In $\triangle ABL AB^2 = BL^2 + AL^2$ $\Rightarrow a^2 = BL^2 + AL^2$ $\therefore a = \sqrt{BL^2 + AL^2} = \sqrt{(12)^2 + (16)^2}$ cm $= \sqrt{144 + 256}$ cm $\Rightarrow a = \sqrt{400} \text{cm} = 20 \text{cm}$

Hence, perimeter = (20 + 20 + 24) cm = 64 cm.

Join BC, Then, $\angle ACB = 90^{\circ}$ (Angle in the semicircle) Since DCBE is a cyclic quadrilateral. $\angle BCD + \angle BED = 180^{\circ}$

Page 11 of 18

BEST OF LUCK 👔 @vcgc.aligarh 🞯 @vcgc_aligarh 🎔 @VCGC Aligarh 🔛 VCGC Online 🏹 WCGC Online App

Adding $\angle ACB$ both the sides, we get \angle BCD + \angle BED + \angle ACB = \angle ACB +180° $(\angle BCD + \angle ACB) + \angle BED = 90^{\circ} + 180^{\circ}$ $\angle ACD + \angle BED = 270^{\circ}$ 23. Outer diameter = 10 cm \therefore Outer radius (R) = $\frac{10}{2}$ cm = 5 cm As Inner diameter = 9 cm \therefore Inner radius (r) = $\frac{9}{2}$ cm Volume of the metal contained in the shell = $\frac{4}{3}\pi R^3 - \frac{4}{3}\pi r^3$
$$\begin{split} & \frac{4}{3}\pi(R^3 - r^3) = \frac{4}{3} \times \frac{22}{7} \times [(5)^3 - (\frac{9}{3})] \\ & = \frac{4}{3} \times \frac{22}{7} \times (125 - \frac{729}{8}) \\ & = \frac{4}{3} \times \frac{22}{7} \times \frac{271}{8} = \frac{2981}{21} \ cm^3 \end{split}$$
24. In the given diagram join AB. Also \angle ABD = 90° (because angle in a semicircle is always 90°) Similarly, we have $\angle ABC = 90^{\circ}$ So, $\angle ABD + \angle ABC = 90^\circ + 90^\circ = 180^\circ$ Therefore, DBC is a line i.e., B lies on the line segment DC. OR $\angle ODB = \angle OAC = 50^{\circ}$ [angles in the same segment] $OB = OD \Rightarrow \angle OBD = \angle ODB = 50^\circ = x^\circ$ $=> x^{0} = 50^{0}$ 25. For x = 2, y = 1x + y + 4 = 0L.H.S. = x + y + 4= 2 + 1 + 4 = 7 \neq R.H.S \therefore x = 2, y = 1 is not a solution of x + y + 4 = 0. OR x-2y=4 Put $x = \sqrt{2}$, $y = 4\sqrt{2}$ in given equation, we get $\sqrt{2} - 2(4\sqrt{2}) = \sqrt{2} - 8\sqrt{2} = -7\sqrt{2}$ which is not 4. $\therefore (\sqrt{2}, 4\sqrt{2})$ is not a solution of given equation. Section C 26. Here a = $\frac{1}{3}$, b = $\frac{1}{2}$, n = 3 $\therefore \frac{b-a}{n+1} = \frac{\frac{1}{2} - \frac{1}{3}}{3+1} = \frac{\frac{3-2}{6}}{4} = \frac{\frac{1}{6}}{4} = \frac{1}{24}$ $\therefore \text{ Three rational numbers between } \frac{1}{3} \text{ and } \frac{1}{2} \text{ are}$ $rac{1}{3}+rac{1}{24},rac{1}{3}+2\left(rac{1}{24}
ight),rac{1}{3}+3\left(rac{1}{24}
ight)$ $\frac{1}{3} + \frac{1}{24}, \frac{1}{3} + \frac{1}{12}, \frac{1}{3} + \frac{1}{8}$ $\frac{3}{8}, \frac{5}{12}, \frac{11}{24}$ 27. $p(x) = 2x^2 + kx + \sqrt{2}$ We know that according to the factor theorem p(a) = 0, if x - a is a factor of p(x)We conclude that if $(x-1)isafactorofp(x)=2x^2+kx+\sqrt{2}$ then p(1)=0 $p(1) = 2(1)^2 + k(1) + \sqrt{2} = 0$, or $2 + k + \sqrt{2} = 0$ $k = -(2 + \sqrt{2}).$ Therefore, we can conclude that the value of k is $-(2+\sqrt{2})$ 28. Let ABC be an equilateral triangle, O be the interior point and OQ, OR and OC are the perpendicular drawn from points O. Let the sides of an equilateral triangle be a m.

Page 12 of 18

Area of $\Delta AOB = \frac{1}{2} \times AB \times OP$ [:: Area of a triangle = $\frac{1}{2} \times (base \times height)$] = $\frac{1}{2}$ \times a \times 14= $7a\,cm^2$...(1) Area of $\triangle OBC = \frac{1}{2} \times BC \times OQ = \frac{1}{2} \times a \times 10$ $= 5a \text{ cm}^2 \dots (2)$ Area of $\Delta OAC = rac{1}{2} imes AC imes OR = rac{1}{2} imes a imes 6$ $= 3a \text{ cm}^2...(3)$ \therefore Area of an equilateral ΔABC = Area of $(\Delta OAB + \Delta OBC + \Delta OAC)$ $= (7a + 5a + 3a) \text{ cm}^2$ $= 15a \text{ cm}^2...(4)$ We have, semi-perimeter $s = \frac{a+a+a}{2}$ $\Rightarrow s = \frac{3a}{2}cm$ \therefore Area of an equilateral $\Delta ABC = \sqrt{s(s-a)(s-b)(s-c)}$ [By Heron's formula] $a=\sqrt{rac{3a}{2}\Big(rac{3a}{2}-a\Big)\left(rac{3a}{2}-a
ight)\Big(rac{3a}{2}-a\Big)\left(rac{3a}{2}-a
ight)}$ $=\sqrt{\frac{3a}{2}\times \frac{a}{2}\times \frac{a}{2}} \times \frac{a}{2}$ $=rac{\sqrt{3}}{4}a^2$...(5) $= \frac{\sqrt{6}}{4}a^2 \dots (5)$ From equations (4) and (5), we get $\frac{\sqrt{3}}{4}a^2 = 15a$ $\Rightarrow a = \frac{15 \times 4}{\sqrt{3}} = \frac{60}{\sqrt{3}}$ $\Rightarrow a = \frac{60}{\sqrt{3}} = \frac{\sqrt{3}}{\sqrt{3}} = 20\sqrt{3}cm$ On putting $a = 20\sqrt{3}$ in equation (5), we get Area of $\Delta ABC = \frac{\sqrt{3}}{4}(20\sqrt{3})^2 = \frac{\sqrt{3}}{4} \times 400 \times 3 = 300\sqrt{3}cm^2$ Hence, the area of an equilateral triangle is $300\sqrt{3}cm^2$. OR The sides of triangular side walls of flyover which have been used for advertisements are 13 m, 14 m, 15 m. $s = rac{13+14+15}{2} = rac{42}{2} = 21m$ $=\sqrt{21(21-13)(21-14)(21-15)}$ $=\sqrt{21 imes 8 imes 7 imes 6}$ $=\sqrt{7 imes 3 imes 2 imes 2 imes 2 imes 2 imes 3 imes 2}$ $= 7 \times 3 \times 2 \times 2 = 84m^2$ It is given that the advertisement yield an earning of Rs. 2,000 per m² a year. \therefore Rent for 1 m² for 1 year = Rs. 2000 So, rent for 1 m² for 6 months or $\frac{1}{2}year = Rs(\frac{1}{2} \times 2000) = Rs.$ 1,000. : Rent for 84 m² for 6 months = Rs. (1000×84) = Rs. 84,000. 29. 3x + 2y = 6Put y = 0, we get 3x + 2(0) = 6 $\Rightarrow 3x = 6$ $\Rightarrow x = \frac{6}{3} = 2$ \therefore (2, 0) is a solution. 3x + 2y = 6

Page 13 of 18

put x = 0, we get 3(0) + 2y = 6 $\Rightarrow 2y = 6$ $\Rightarrow y = \frac{6}{2} = 3$ \therefore (0, 3) is a solution. 5x + 2y = 10Put y = 0, we get 5x + 2(0) = 10 \Rightarrow 5x = 10 $\Rightarrow x = \frac{10}{5} = 2$ \therefore (2, 0) is a solution. 5x + 2y = 10Put x = 0, we get 5(0) + 2y = 10 $\Rightarrow 2y = 10$ $\Rightarrow y = \frac{10}{2} = 5$ \therefore (0, 5) is a solution.

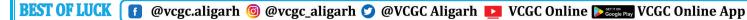
The given equations have a common solution (2, 0).

P

30. Let ABCD be a rhombus and P, Q, R and S be the mid-points of sides AB, BC, CD and DA, respectively (Fig.). Join AC and BD.

p R C From triangle ABD, we have $SP = \frac{1}{2}BD$ and SP || BD (Because S and P are mid-points) Similarly $RQ = \frac{1}{2}BD$ and RQ || BDTherefore, SP = RQ and SP || RQSo, PQRS is a parallelogram ...(1) Also, AC \perp BD (Diagonals of a rhombus are perpendicular) Further PQ || AC (From $\triangle BAC$) As SP || BD, PQ || AC and AC \perp BD, therefore, we have BD \perp PQ, i.e. \angle SPQ = 90°. ..(2) Therefore, PQRS is a rectangle. [From (1) and (2)]

0


OR

D is mid points of AB and DE || BP \therefore E is midpoint of AP \therefore AE = EP Therefore, AP=2AE Also PC = $\frac{1}{2}$ AP 2PC = AP 2PC = 2AE \Rightarrow PC = AE \therefore AE = PE = PC \therefore AC = AE + EP + PC AC = AE + AE + AE \Rightarrow AE = $\frac{1}{3}$ AC Hence Proved.

In $\triangle ABP$

31. Given LM is a line parallel to the Y-axis and its perpendicular distance from Y-axis is 3 units.

Page 14 of 18

i. Coordinate of point P = (3,2) Coordinate of point Q = (3,-1)

Coordinate of point R = (3, 0) [since its lies on X-axis, so its y coordinate is zero].

ii. Abscissa of point L = 3, abscissa of point M=3
∴ Difference between the abscissa of the points L and M = 3 – 3 = 0

Section D

• Four lines: = \overrightarrow{AB} , \overrightarrow{CD} , \overrightarrow{PQ} , \overrightarrow{RS} • Four collinear points: M,E,G,B 34. To Prove: $\angle ROS = \frac{1}{2}(\angle QOS - \angle POS)$ Given: OR is perpendicular to PQ, or $\angle QOR = 90^{\circ}$ From the given figure, we can conclude that \angle POR and \angle QOR form a linear pair. We know that sum of the angles of a linear pair is 180°. $\therefore \angle POR + \angle QOR = 180^{\circ}$ or $\angle POR = 90^{\circ}$ From the figure, we can conclude that $\angle POR = \angle POS + \angle ROS$ $\Rightarrow \angle POS + \angle ROS = 90^{\circ}$ $\Rightarrow \angle ROS = 90^\circ - \angle POS...(i)$ Again, $\angle QOS + \angle POS = 180^{\circ}$ $\Rightarrow \frac{1}{2}(\angle QOS + \angle POS) = 90^{\circ}$.(ii) Substitute (ii) in (i), to get $\angle ROS = \frac{1}{2}(\angle QOS + \angle POS) - \angle POS$ $=\frac{1}{2}(\angle QOS - \angle POS).$ Therefore, the desired result is proved. OR GUIO Since corresponding angles are equal. $\therefore x = y \dots (i)$ We know that the interior angles on the same side of the transversal are supplementary. $\therefore y + 55^{\circ} = 180^{\circ}$ \Rightarrow y = 180° - 55° = 125° So, $x = y = 125^{\circ}$ Since AB || CD and CD || EF. : AB || EF $\Rightarrow \angle EAB + \angle FEA = 180^{\circ}$ [: Interior angles on the same side of the transversal EA are supplementary] $\Rightarrow 90^{\circ} + z + 55^{\circ} = 180^{\circ}$ \Rightarrow z = 35^o 35. The given polynomial is, $f(x) = x^4 + ax^3 - 7x^2 - 8x + b$ Now, $x + 2 = 0 \Rightarrow x = -2$ By the factor theorem, we can say: f(x) will be exactly divisible by (x + 2) if f(-2) = 0Therefore, we have: $f(-2) = [(-2)^4 + a \times (-2)^3 - 7 \times (-2)^2 - 8 \times (-2) + b]$ = (16 - 8a - 28 + 16 + b)= (4 - 8a + b) \therefore f(-2) = 0 \Rightarrow 8a - b = 4 ...(i) Also, $x + 3 = 0 \Rightarrow x = -3$ By the factor theorem, we can say: f(x) will be exactly divisible by (x + 3) if f(-3) = 0Therefore, we have: $f(-3) = [(-3)^4 + a \times (-3)^3 - 7 \times (-3)^2 - 8 \times (-3) + b]$ = (81 - 27a - 63 + 24 + b)= (42 - 27a + b) \therefore f(-3) = 0 \Rightarrow 27a - b = 42 ...(ii) Subtracting (i) from (ii), we have: \Rightarrow 19a = 38 $\Rightarrow a = 2$

Page 16 of 18

Putting the value of a, we get the value of b, i.e., 12 \therefore a = 2 and b = 12

Section E

36. i. Expenses in 2009-10 = 9160 Million Expenses in 2010-11 = 10300 Million Total expenses from 2009 to 2011 = 9160 + 10300= 19460 Million ii. Expenses in 2009-10 = 9160 Million Expenses in 2010-11 = 10300 Million Thus percentage of no of expenses in 2009-10 over the expenses in 2010-11 $=\frac{9160}{10300}\times 100$ = 88.93% iii. The minimum expenses (in 2007-08) = 5.4 Million The maximum expenses (in 2010-11) = 10300 Million Thus percentage of no of minimum expenses over the maximum expenses $=\frac{5.4}{10300}$ × 100 = 0.052% OR The expenses in 2010-11 = 10300 Million The expenses in 2006-09 = 9060 Million The difference = 10300 - 9060 Million = 1240 Million 37. i. Diameter of golf ball = 4.2 cm Radius of golf ball, R = 2.1 cm Radius of dimple, r = 2mm = 0.2 cm Surface area of each dimple = $2\pi r^2$ $2 \times \frac{22}{7} \times (0.2)^2 = 0.08 \text{ cm}^2$ ii. Diameter of golf ball = 4.2 cm Radius of golf ball, R = 2.1 cm Radius of dimple ,r = 2mm = 0.2cmVolume of the material dug out to make one dimple = Volume of 1 dimple $=\frac{2}{3}\pi r^{3}$ $=\frac{0.016\pi}{3}$ cm³ iii. Diameter of golf ball = 4.2 cm Radius of golf ball, R = 2.1 cm Radius of dimple, r = 2mm = 0.2cmThe total surface area exposed to the surroundings = surface area of golf ball - surface area of 315 dimples $= 4\pi R^2 - 315 \times 0.08\pi$ $= 70.56\pi - 25.2\pi \text{ cm}^2$ $= 45.36\pi \text{ cm}^2$ OR Diameter of golf ball = 4.2 cm Radius of golf ball, R = 2.1 cm Radius of dimple, r = 2mm = 0.2cm volume of the golf ball = volume of sphere - volume of 315 dimples $=\frac{4}{3}\pi R^3 - 315 \times \frac{2}{3}\pi r^3$ $=\frac{4}{3}\pi(74.088-10.08)$ $= 97.344 \,\pi \text{cm}^3$ Page 17 of 18

BEST OF LUCK 👔 @vcgc.aligarh 適 @vcgc_aligarh 💋 @VCGC Aligarh 🔼 VCGC Online 属 WCGC Online App

38. i. \triangle ADE and \triangle CFE DE = EF (By construction) \angle AED = \angle CEF (Vertically opposite angles) AE = EC(By construction) By SAS criteria $\triangle ADE \cong \triangle CFE$ ii. $\triangle ADE \cong \triangle CFE$ Corresponding part of congruent triangle are equal $\angle EFC = \angle EDA$ alternate interior angles are equal \Rightarrow AD || FC \Rightarrow CF || AB iii. $\triangle ADE \cong \triangle CFE$ Corresponding part of congruent triangle are equal. CF = ADWe know that D is mid point AB \Rightarrow AD = BD \Rightarrow CF = BD OR DE = $\frac{BC}{2}$ {line drawn from mid points of 2 sides of \triangle is parallel and half of third side} h. Guidance Goaching DE BC and DF BC DF = DE + EF \Rightarrow DF = 2DE(BE = EF) \Rightarrow DF = BC

Page 18 of 18